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Abstract: We report on the experimental study of phase noise properties
of a high frequency photonic microwave oscillator based on four wave
mixing in calcium fluoride whispering gallery mode resonators. Specifically,
the oscillator generates ∼ 8.5 GHz signals with −120 dBc/Hz at 100 kHz
from the carrier. The floor of the phase noise is limited by the shot noise
of the signal received at the photodetector. We argue that the performance
of the oscillator can be significantly improved if one uses extremely high
finesse resonators, increases the input optical power, supersaturates the
oscillator, and suppresses the residual stimulated Raman scattering in the
resonator. We also disclose a method of extremely sensitive measurement
of the integral dispersion of millimeter scale dielectric resonators.
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1. Introduction

High frequency low-noise microwave signals are required in various applications including
high performance communication and radar systems. The signals are usually produced elec-
tronically by multiplying the frequency of quartz oscillators or are generated directly using mi-
crowave cavities [1]-[4]. Photonic techniques for generation of microwave signals provide an
alternative solutions, adding new features to the microwave oscillators, such as ultra-low phase
noise and small size [5]-[8]. Furthermore, photonic devices are potentially able to achieve low
phase noise for high frequency (exceeding 30 GHz) microwave signals, while the performance
of electronic devices gradually degrades with the frequency increase [1]. In this paper we focus
on microwave photonic sources that utilize optical whispering gallery mode (WGM) resonators
and their nonlinear properties. The resonators are characterized with very-high Q, are compact
as well as environmentally stable, and are promising for fabrication of miniature high perfor-
mance microwave photonic oscillators.

Photonic microwave oscillators are generally based on generation and subsequent demodu-
lation of polychromatic light to produce a well defined and stable beat-note signal. There are
several approaches for realization of the oscilators. The most obvious way is based on stabi-
lization of two lasers using different modes of the same optical resonator. This technique was
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used, for instance, in proof of the principle experiments with fused silica WGM resonator sta-
bilized diode lasers [9]. Crystalline WGM resonators seem to be more suitable for this purpose
because of their high Q-factors [10] as well as potentially high stability [11, 12]. Another way
for generation of coherent optical signals is based on excitation of hyperparametric oscillations
in WGM resonators [13]-[19]. Such an oscillator has the advantage of a small size, and low
input power, and can generate microwave signals at any desired frequency, which is determined
by the size of the resonator. Study of properties of such an oscillator is the theme of this paper.

Hyperparametric optical oscillation [20] is based on four-wave mixing among two pump,
signal, and idler photons, and results in the growth of the signal and idler optical sidebands
from vacuum fluctuations at the expense of the pumping wave. Hyperparametric oscillations
are different from the parametric ones. Parametric oscillations are based on a χ (2) nonlinear-
ity coupling three photons and have phase matching conditions involving far separated optical
frequencies. By contrast, the hyperparametric oscillations are based on a χ (3) nonlinearity cou-
pling four photons and have phase matching conditions involving nearly-degenerate optical
frequencies.

The hyperparametric oscillator based on WGM modes is fundamentally identical to the ad-
ditive modulational instability ring laser predicted and demonstrated in the fiber ring resonators
[21, 22, 23]. The basic difference between these systems is the intrinsic suppression of the
Brillouin scattering (generally present in the fiber lasers) and the presence of a significant geo-
metrical dispersion in WGM resonators of the proper size.

A high intracavity intensity in high finesse WGMs results in χ (3) based four-photonprocesses
like h̄ω + h̄ω → h̄(ω + ωM) + h̄(ω −ωM), where ω is the carrier frequency of the external
pumping, and ωM is determined by the the free spectral range of the resonator ω M ≈ ΩFSR.
Cascading of the process and generating multiple equidistant signal and idler harmonics (optical
comb) is also possible in this oscillator [14]. Demodulation of the oscillator output by means
of a fast photodiode results in the generation of high frequency microwave signals at frequency
ωM . The spectral purity of the signal increases with increasing Q factor of the WGMs and the
optical power of the generated signal and idler. The pumping threshold value of the oscillation
can be as small as several microWatt for the resonators with ultrahigh Q-factors [18].

Here we report on the experimental realization of a low noise hyper-parametric microwave
photonic oscillator based on a calcium fluoride WGM resonator. The oscillator produces signals
at 8.4 GHz with a phase noise of -120 dBc/Hz at 100 kHz from the carrier, while consuming
less than 100 mW of optical power at 1319 nm. We show that, as expected, the noise floor of
the oscillator is given by the optical shot noise. The number of generated optical harmonics in
our oscillator is restricted due to the stimulated Raman scattering, which, if present, adds noise
to the generated microwave signal. We also discuss possible ways of increasing the number of
the signal and idler sidebands to create an optical combs [14] for generation of low phase noise
microwave signals [8].

The paper is organized as follows. We theoretically study the phase noise of the oscillator
in Section II, followed by the experimental results presented in Section III. In Section IV we
describe the dispersive properties of the WGM resonators as relates to the generation of an
optical comb and report on our measurement of the dispersion in a calcium fluoride resonator.
Possible ways of improvement of the oscillator performance are presented in Section V.

2. Theory

2.1. General properties of the hyperparametric oscillations

Let us analyze the scheme shown in Fig. 1 to explain the basic classical properties of the hy-
perparametric oscillator based on a continuously pumped nonlinear WGM resonator. The solid
state WGM resonator is presented as a ring cavity containing localized in space lossless Kerr
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Fig. 1. A model of a WGM based hyperparametric oscillator. The ring resonator contains a
lossless Kerr nonlinear medium and a linear absorber. The nonlinear medium is character-
ized with nonlinearity coefficient n2, and the absorber is characterized with absorption co-
efficient α . Pump light is sent into the ring resonator through a coupling mirror. We assume
that the light field inside the resonator includes carrier A and idler and signal sidebands B+
and B− respectively (E = Aexp[−i(ωt−kz)]+B+ exp[−i(ω+t−k+z)]+B− exp[−i(ω−t−
k−z)]), k = ωn/c, k± = ω±n/c; and that only the optical carrier is pumped from outside
Ein = Ain exp(−iωt).

medium, in- and out-coupling port, and a linear absorber. For the sake of simplicity, we neglect
by the depletion of the pump wave, assuming that the total power of the generated fields is
much less than the pump power. This is the case in the majority of experiments because the
pump power generally exceeds the power of the sidebands tenfold or even more. A general-
ized theoretical study of a saturated hyperparametric oscillator based on three optical WGMs
is reported in [18]. On the other hand, optical comb generation can be associated with soliton
formation effects, so a theoretical study of the frequency stability of the saturated optical comb
based on the four wave mixing in a WGM resonator is to be performed in the future.

The parametric amplifier is characterized with coefficient G (see Eqs. (2)-(4))

G = Lω0n2
h̄ω
V n

|A|2, (1)

where L = 2πR is the length of the circumference of the resonator, R is the radius of the res-
onator, A is the slow amplitude operator of the pump field normalized such that |A| 2 describes
number of pump photons in the mode of the resonator; n 2 stands for the Kerr nonlinearity of the
material, n is the linear index of refraction of the material, V is the WGM volume. It worth to
note that G = gLn|A|2/c, where g is the coupling parameter introduced in the oscillator model
discussed in [18].

Passing the amplifier (denoted as a triangle in Fig. 1) the pump wave experiences self phase
modulation only

AGout = AGineiG, (2)

where AGin = |AGin|exp iφA and AGout characterize the pump amplitude at the entrance and exit
of the amplifier inside the resonator. The signal and idler modes experience not only the phase
shift, but also amplification

BGout+ =
[
BGin+ + iG(BGin+ +B∗

Gin−e2iφA)
]
eiG, (3)

B∗
Gout− =

[
B∗

Gin−− iG(BGin+e−2iφA +B∗
Gin−)

]
e−iG, (4)

where B+ and B− are the slow amplitude operators of the idler and signal. Frequencies of the
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generated sidebands (ω+ and ω−) obey to the energy conservation law

2ω = ω+ + ω−, (5)

To find the intracavity field E we write the additional condition for the field components
resulting from the propagation of the light through the linear part of the resonator

AGin = AGoute
iωLn/ce−α

√
1−Tc +

√
TcAin, (6)

BGin± = BGout±eiω±Ln/ce−α
√

1−Tc, (7)

where α � 1 is the total light absorption in the resonator per round trip (does not depend on
the frequency), Tc � 1 is the coupling factor. It is useful to remind that all but one (A in) field
parameters in Eqs. (6) and (7) belong to the intracavity fields.

Combining (2) and (6) we get equation for the optical pump

|AGin|eiφA

{
1− ei(G+ωLn/c)e−α

√
1−Tc

}
=
√

TcAin; (8)

combining (3-4) and (7) we derive equations for the sidebands

BGin+

[
e−iω+Ln/c+α(1−Tc)−1/2 − (1+ iG)eiG

]
= iGei(2φA+G)B∗

Gin−, (9)

B∗
Gin−

[
eiω−Ln/c+α(1−Tc)−1/2− (1− iG)e−iG

]
= −iGe−i(2φA+G)BGin+, (10)

which result in the oscillation condition

[
e−i

ω+−ω−
2

Ln
c +α −

√
1−Tc

]2
= e−i

ω+−ω−
2

Ln
c +α

√
1−Tc

[
e−i(ωLn/c+G)(1− iG)+ c.c.−2

]
,

(11)
Deriving Eq. (11) we have used Eq.(5).

Eq.(11) can be decomposed into two equations

exp

[
−i

ω+−ω−
2

Ln
c

]
= 1, (12)

[
eα −

√
1−Tc

]2
= eα

√
1−Tc

[
e−i(ωLn/c+G)(1− iG)+ c.c.−2

]
, (13)

where (12) is the condition for the oscillation frequency, and (13) is the condition for the pump
amplitude and frequency required to sustain the oscillations (c.f. Eq. B20 of [18]). Eq.(13) is
to be solved together with Eq.(8), and then the amplitude of the output pump light A out can be
found from equation

Aout = −AGinei(G+ωLn/c)e−α√Tc +Ain

√
1−Tc : (14)

Aout =
√

1−Tc− exp[i(G+ ωLn/c)]exp[−α]
1− exp[i(G+ ωLn/c)]exp[−α]

√
1−Tc

Ain (15)

We derive the oscillation threshold conditions from Eq.(13)

−i
(

e−iωLn/c −1
)

� 2

(
α +

Tc

2

)
, (16)

G � α +
Tc

2
. (17)
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The conditions mean that the oscillation start when the gain approaches the absorption, and that
the detuning of the pump laser from the resonance should be specially selected for the oscilla-
tions to start. The frequency of the drive field (16) is selected such that G reaches its absolute
minimum at that point. This frequency tuning slightly differs from the tuning corresponding to
the smallest value of the outside optical pumping that results in reaching the oscillation thresh-
old [18].

We find from (12) that

ω+ −ω− =
2c
Rn

= 2ΩFSR. (18)

The frequency difference of the generated field depends on the natural free spectral range (FSR)
of the resonator only. There is no dependence on the cross- and self-phase modulation effects.
It confirms our previous conclusion that the nonlinear effects do not influence the oscillation
frequency if one considers a completely symmetric three mode model of the oscillator [18]. In-
fluence of the effects on the noise of slightly asymmetric systems as well as systems containing
many modes (optical combs) is to be studied. We have neglected the material as well as geomet-
rical dispersion in the above analysis. However this rule holds even for a dispersive resonator
[18]. Keeping in mind Eq. (5), we find that the generated sidebands are always equidistant

ω+−ω = ω −ω− = ΩFSR. (19)

Eqs. (9) and (10) do not provide information on the steady state of the sideband amplitude,
however they carry information about relative phase and amplitude of the sidebands. Using
Eq. (19) we find that

eiωLn/c = eiω±Ln/c. (20)

Substituting Eq. (20) into Eqs. (9) and (10) and using Eq. 13 we obtain

|BGin+| = |BGin−|, (21)

i.e. we find that the generated signal and idler sidebands have equal amplitudes. Defining phases
of the sidebands as BGin± = |BGin±|exp iφ± we obtain from Eqs. (9) and (10) that far above the
threshold (G 	 Tc/2+ α)

ei(2φA−φ−−φ+) �−
√

G2 − (α +Tc/2)2 + i(α +Tc/2)
G

�−1, (22)

while for the pump light we have (in accordance with (15))

Aout � α −Tc/2− i(
√

G2 − (α +Tc/2)2 −G)
α +Tc/2− i(

√
G2 − (α +Tc/2)2 −G)

Ain, (23)

which approaches −Ain if Tc/2 	 α (overcoupled resonator). Combining Eq. (21), (22), and
(23) we conclude that the light exiting the resonator is nearly phase modulated

|B+A∗
out +AoutB

∗
−|2 → 0, if G 	 Tc/2+ α. (24)

It is possible to show that the modulation type does not change if one uses a resonator with two
couplers instead of one coupler. The phase modulation should be converted to the amplitude
modulation to observe the modulated signal by means of a fast photodiode. Such a conversion
can be realized using an optical filter or a local oscillator.

The basic results of the section are: (i) we have shown that the hyperparametric oscillations
occur as the result of self- and cross-phase modulation in a dielectric material possessing Kerr
nonlinearity, (ii) the light escaping the nonlinear resonator is mostly phase modulated if the
resonator is overcoupled.
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2.2. Noise

Let us discuss now the phase noise of the hyperparametric oscillator based on the nonlinear
WGM resonator. The light escaping the resonator is phase modulated, as is shown above. There-
fore, the slow amplitude of electric field at the exit of the resonator (Fig. 2) can be represented
as

Eout = A+2iBsin[ωMt + φ(t)], (25)

where B is the amplitude of each sideband, ωM is the frequency difference between the gener-
ated sidebands and the pumping light, and φ(t) is the oscillator phase noise. With the appropri-
ate choice of the origin of time, we can assume that A and B are real. The field amplitude at the
photodiode is

EPD = Eoute
−αc2r +ELOeiψLO

√
1− r2, (26)

where e−αc2 is the amplitude loss at the output coupler (Cp2), ELO is the amplitude of the
electric field of the local oscillator (we use the local oscillator to transform the phase modulation
into the amplitude modulation), ψLO is the phase of the local oscillator, r is the amplitude
transmissivity of the splitter Sp2. We select ψLO = π/2, then the DC optical power on the
photodiode is

PPD = PAe−2αc2r2 +PLO(1− r2), (27)

where PA is the power of optical carrier escaping the resonator, and PLO is the power of the local
oscillator.

The AC photocurrent in the photodiode is given as

j = 4RELOBe−αc2
√

1− r2 sin[ωMt + φ(t)], (28)

where R is the responsivity of the photodiode; so that the demodulated time averaged mi-
crowave power is

Pmw = 8ρR2PLOPBe−2αc2(1− r2), (29)

where ρ is the resistance at the output of the photodiode.
The phase noise of the oscillator can be described by a modified Leeson formula [25]

Sφ �
[
1+

ηPmw

2ρR2P2
PD

PPD

PB

γ2

f 2

]
2hν0

ηPPD
�

[
1+4ηe−2αc2

γ2

f 2

]
2hν0

ηPLO(1− r2)
, (30)

where γ is the half width of the half maximum of the loaded WGM resonance and ν 0 is the
carrier frequency, η is the quantum efficiency of the detector. The first term in the right hand
side stands for the shot noise, and the second – for the noise associated with the phase diffusion.
The Leeson formula was originally developed for electronic oscillators [25]. As one can see,
the phase noise of the photonic microwave oscillators can be described by means of similar
relationship. We have taken into account that the phase diffusion of the unsaturated oscillator is
determined by the optical sideband power PB [18], similarly to the Schawlow-Townes linewidth
[26],

Dφ � (2πγ)2

4
hν0

PB
, (31)

and that the corresponding phase noise spectral density is

S( f ) =
4Dφ

(2π f )2 . (32)

It is interesting to note that the Leeson frequency is equal to γ in a conventional microwave os-
cillator [24], but it is twice less than γ in the hyperparametric oscillator (see Eq. (31)) because
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Fig. 2. Experimental setup. Light from a YAG laser is split at a 50/50 splitter Sp1. One
part is sent into a CaF2 WGM resonator (WGMR) through coupler Cp1. The other part is
sent to a fiber delay line. The light is retrieved out of the resonator using the coupler Cp2,
is combined with the light propagated through the delay line using splitter Sp2, and sent to
the fast photodiode (PD). About 90% of light from the resonator goes to the photodiode.
Microwave signal at the output of the photodiode is preamplified with an amplifier (g) and
forwarded to a microwave spectrum analyzer (SA).

the oscillator generates two correlated harmonics. This value can be even less if the oscillator
generates an optical comb. The corner frequency of the phase noise, determined as the fre-
quency at which the white shot noise and the oscillator phase diffusion noise equally contribute
to the phase noise, (30) can be different from the Leeson frequency depending on the residual
absorption in the fiber link and the coupling losses.

The basic conclusions of the theoretical consideration is that (i) the power spectral density
of the phase noise of the oscillator does not depend on the efficiency of the parametric process,
but the generated microwave power is proportional to the power of the optical sidebands; and
(ii) the corner frequency of the phase noise can exceed the half width of the half maximum of
the loaded WGM resonance. As will be shown below, these conclusions are consistent with our
experimental observations.

3. Experiment

In our experiments light from a YAG laser was sent into a CaF2 WGM resonator and retrieved
out of the resonator using two angle cut fiber couplers Cp1 and Cp2 (Fig. 2). The laser linewidth
was less than 5 kHz, and the maximum coupling efficiency was better than 50%. A typical CaF 2

resonator had a toroidal shape with a diameter of several millimeters and thickness in the range
of several hundred microns (the preform thickness had 500 μm thickness). The resonator loaded
Q-factor was on the order of 109 (intrinsic Q-factor exceeded 1010).

The resonator starts to oscillate generating signal and idler sidebands when the optical pump-
ing power exceeds some threshold value (typically a milliwatt). We found that if the light
emerging from the resonator is directly sent to a photodiode it does not generate any detectable
microwave signal. However the modulation appears if the resonator is placed into an arm of a
Mach-Zehnder interferometer and the delay in the second arm of the interferometer is correctly
chosen. This is a distinct property of phase modulated light. A typical picture of phase noise of
the generated microwave signal is shown in Fig. (3). The lowest noise floor we observed was
-126 dBc at 300 kHz.

We have performed a more careful study of the oscillator noise properties. The basic conclu-
sions are that (i) the noise floor of the oscillator is shot noise limited if the length of the delay
line is properly selected so as the delay does not act as the discriminator to the laser frequency
noise, and (ii) that the Leeson frequency exceeded the half width of the half maximum of the
loaded WGM resonance. The results of the measurements are presented in Figs. (4) and (5).

Let us show that the observed phase noise is limited by the shot noise. The shot noise is
S j = 2q j (A2/Hz), where j = RPD is the photocurrent, PD = 6×10−3 W is the average optical
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Fig. 3. Typical phase noise of the oscillator. The loaded quality factor of the resonator is
Q � 109, so that half width at the half maximum of the resonance is γ � 115 kHz. The
length of the delay line is ∼ 115 m. This is shorter length compared with the length of the
delay line that corresponds to Q = 109 (∼ 300 m), however the delay line gave us the best
overall oscillator performance. The total optical power on the detector PD is 6 mW. The
power of the microwave signal leaving the detector is −46.1 dBm. The output microwave
amplifier has an estimated 7 dB noise figure and 43.1 dB of gain. The power of the output
microwave signal at the spectrum analyzer is -3 dBm.

power, R = ηq/h̄ω = 0.8 A/W is the responsivity of our detector at λ = 1320 nm, and η is
the quantum efficiency of the detector. Introducing the load resistance ρ (50 Ohm in our case)
at the detector output, the shot noise spectrum is

Sshot = 2qRPDρ = 7.7×10−20W/Hz (−161 dBm/Hz),

The thermal noise spectrum is

Sthermal = kT = 4×10−21W/Hz (−174 dBm/Hz).

The detector output is only accessible through the microwave amplifier, which adds its noise.
The latter is specified as the noise figure F , which includes thermal noise at the standard tem-
perature T0 = 290 K (17 ◦C). Thus, we replace kT with FkT0. We neglect the difference between
T0 and the actual room temperature. The background of the readout system, detector and am-
plifier, converted into phase noise is

Sφ =
Sshot +Sampli

Pmw|D =
2qRPDρ +FkT0

Pmw|D =
2qRPDρ +FkT0

Pmw|SA/g2 ,

where Pmw is the demodulated averaged microwave power at the detector output or at the
spectrum analyzer input, and g2 is the amplifier power gain. The quantity L ( f ), defined as
L ( f ) = 1

2 Sφ( f ), is the most commonly used in the literature [27].
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Fig. 4. Phase noise of the oscillators with different lengths of the delay line. The quality
factor of the resonator is Q � 109. The optical power at the detector is 6 mW. The power of
the output microwave signal at the spectrum analyzer is -12 dBm. The output microwave
amplifier has an estimated 15 dB noise figure and 35 dB of gain. The noise decreases when
the group delay of the resonator approaches the delay of the fiber link.

The above evaluates as Sφ = 3.9×10−12 rad2/Hz (L = −117 dBc/Hz) with PD = 6×10−3

W, g2 = 2×104 (43 dB), F = 5 (7 dB), and Pmw|SA = 5×10−4 W (−3 dBm). This calculated
floor is some 2 dB higher than the floor shown in Fig. 3. This small discrepancy can result from
measurement uncertainty, or be the signature of the noise.

We have observed linear increase of the phase noise floor of the microwave signal versus
the light power on the photodiode. However, the phase noise does not appear flat in all the
measurements (see, e.g., Fig. 4), which one would expect in the case of shot noise limited
operation. More rigorous studies of the oscillator noise are required.

The thermal noise considered in the paper is related to the photodetector as well as the mi-
crowave circuit. We had not taken into account the fundamental thermodynamic noises influ-
encing the stability of the microwave signal. Those noises are orders of magnitude smaller
compered with the observed noises, in accordance with the theoretical predictions [11, 12].
However, the situation can change if one will use small resonators where the thermodynamic
noise increases.

Therefore, our experiment confirms that the phase noise floor of the hyperparametric oscilla-
tor agrees with shot noise limited operation and that the corner frequency of the power spectral
density of the phase noise is determined by the linewidth of the WGM resonances. Increase
of the quality factor of the resonator will result in an improvement of the oscillator properties.
Generation of multiple harmonics also should be profitable.
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Fig. 5. Phase noise of the microwave signal as a function of the Q. The Q was changed
by controlling the loaded coupling to the resonator. The higher Q value was achieved with
a smaller loading. It results in a smaller corner frequency, but also in a larger noise floor.
Noise floor rises because the higher Q corresponds to the bigger insertion loss in the res-
onator. On the other hand, the higher Q results in more efficient nonlinear process and
increase of the generated sideband that reduces the phase diffusion of the oscillator.

4. Dispersive properties of calcium fluoride WGM resonators and prospects for optical
comb generation

4.1. Dispersion of WGMs: theory

The maximum possible frequency between the signal and idler fields in our experiment is de-
termined by the nonequidistance of the modes of the resonator, occurring because of the second
order dispersion of the material and the geometrical dispersion given by the mode structure. We
introduce a parameter D = (2ν0 − ν+ − ν−)/2γ to characterize the total dispersion, where ν0,
ν+, and ν− are the frequencies of the pump, idler, and signal modes respectively. If |D| ≥ 1 the
modes of the resonator are essentially not equidistant and the oscillations are suppressed due to
the energy conservation law. Using Sellmeier’s dispersion equation for CaF 2 we find D ∼ 0.05
at 1.3 μm laser wavelength and Q = 109 in our resonator. This implies that the maximum
number of sidebands generated in our WGM resonator made of fluorite does not exceed 200.
Generation of a larger number of harmonics is possible but different pump frequency or lower
Q resonator is required. We do not observe generation of multiple harmonics because of the ef-
ficient Raman scattering that masks the oscillations at higher pump powers, as well as because
of the change of the mode spacing due to the interaction between WGM in the resonator.

The geometrical dispersion of the WGM resonator is normal. This means that longer wave-
length pulses travel faster in the resonator. This might be explained by the fact that longer
wavelength modes are located deeper in the interior of the resonator and, therefore, their geo-
metrical length is shorter. The material dispersion, which can be negative, together with the
geometrical dispersion of the resonator can result in a positive as well as a negative group ve-
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locity dispersion [28]. It is also possible to achieve D = 0 for a given resonator and achieve
generation of a large multiple of harmonics (comb) [14].

Let us estimate the width of the optical comb that can be generated in the oscillator. The
WGM spectrum is described by

n(ωl)
c

ωl � l
R

[
1+

1.86

l2/3

]
, (33)

where l 	 1 is the mode number, R is the radius of the resonator, n(ω l) is the index of refraction
of the material for mode frequency ω l . The frequency dependence of the index of refraction can
be presented in the form

ωl

c
n(ωl) � ωl0

c
n(ωl0)+ β ′(ωl0)[ωl −ωl0]+

1
2

β ′′(ωl0)[ωl −ωl0]2 +
1
6

β ′′′(ωl0)[ωl −ωl0]3,
(34)

where β -parameters characterize the dispersion of the medium, and ω l0 is some fixed frequency.
We select ωl0 such that

β ′′(ωl0) �−R[β ′(ωl0)]2

l5/3
, (35)

so that ωl0 corresponds to the point of zero quadratic dispersion of the resonator [28]. In this
case

[ωl0+μ+1−ωl0+μ ] = [ωl0+1 −ωl0]+ μ2 2[β ′′(ωl0)]2 −β ′′′(ωl0)β ′(ωl0)
2R3[β ′(ωl0)]5

, (36)

and the spectral width of the comb (2μ [ω l0+μ+1 −ωl0+μ ]) can be estimated from expression
[ωl0+μ+1 −ωl0+μ ]− [ωl0+1−ωl0] = 2πγ , or

Δωcomb =
β ′(ωl0)
F 1/2

{
2[β ′′(ωl0)]2 −β ′′′(ωl0)β ′(ωl0)

}−1/2
, (37)

where F = 2πγRβ ′(ωl0) is the finesse of the resonator. We have found that, for example,
for a resonator with Q = 1010 and FSR = 10 GHz the generated comb can be as wide as
Δωcomb = 2π × 6.5 THz; a decrease in quality factor to Q = 108 results in broadening of the
comb to 65 THz. This value is close to the width of the comb observed in fused silica resonators
[14].

4.2. Dispersion of WGMs: measurement

We have studied the dispersive properties of CaF2 using a toroidal resonator with R � 0.35 cm
(FSR = 9.438 GHz) and Q � 109. The results of our measurements are shown in Fig. 6. We
also have drawn there the theoretical dependencies of the dispersion obtained from Sellmeier’s
dispersion equation [29] for the bulk material as well as the resonator. It is easy to see that
there is a significant discrepancy between the measurement results and theoretical predictions.
The reason could be (i) variation of the dispersion properties of the material compared with
the properties of the sample used for derivation of the Sellmeier’s dispersion equation, (ii) not
enough accuracy in the measured FSR of the WGM resonator, (iii) interaction among various
WGM families. The good news is that the zero dispersion point for CaF2 is in the vicinity of
the telecom optical frequency.

The experimental setup for the dispersion measurement is shown in Fig. (7). Light from
a white light source (WLS, approximately 30 nm bandwidth) was filtered out with a widely
tunable optical pass-band filter having approximately 1 nm linewidth. The portion of the light
that passed the filter was sent to a WGM resonator (MRA) using a coupling prism. The light was
interacting with approximately a dozen of WGM modes belonging to the main mode family as
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Fig. 6. Dispersion of CaF2 resonator shown as the dependence of difference between
frequencies of two adjacent FSRs vs. the wavelength. The resonator has an average
FSR � 9.44 GHz. Solid lines correspond to the dependencies derived from the correspond-
ing Sellmeier’s equation. Blue line stands for the bulk material dispersion, red line – for the
resonator dispersion (geometrical and material). The red line shifts to the right for smaller
resonators.

well as with multiple other modes of the resonator. We interrogated the WGMs using another
prism coupler. The light exiting this coupler was sent to a fast photodiode (PD). The resultant
RF signal from the photodiode was amplified with amplifier (A) and sent to a stabilized RF
spectrum analyzer (SA). The frequency of the RF signal shows FSR averaged among several
WGMs.

An example of the measured RF signal is shown in Fig. (8). We assumed that the maximum
signal belongs to the basic mode sequence and measured its position. The central frequency
of the filter was shifted after the measurement was completed and the measurement procedure
was repeated with new filter position. The overall accuracy of the measurement is on the level
of several kHz. The basic disadvantage of the measurement strategy is the uncertainty while
making connections between RF and optical spectra.

4.3. Advantages of an optical comb for microwave photonics applications

The optical comb is particularly interesting for the photonic generation of microwaves because
it results in a substantial reduction of the noise of the generated signal. The noise reduction is
most pronounced in stabilized equidistant combs and can be explained as an efficient frequency
division of the optical frequency [8]. We assume that the comb has N optical harmonics. If
any two optical frequencies separated by N comb FSRs are mutually stable, and the comb
harmonics are phase locked and essentially equidistant, the phase noise of the beatnote of any
two neighboring harmonics is N times lower than the noise of the optical frequencies [8].

The output microwave power has a saturation point when an optical comb is used to generate
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Fig. 7. Setup for measurement of the dispersion of CaF2 resonator.

Fig. 8. Preamplified microwave signal measured using an RF spectrum analyzer.
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microwave signals. If the electric field of the optical comb is

E = e−iω0t
N

∑
k=1

Eke
−i(k−1)ωMt , (38)

then the power of microwaves radiation with frequency ω M generated at the photodiode is given
by beating of neighboring harmonics

Pmw ∼ |
N

∑
k=1

E∗
k Ek+1|2. (39)

Assuming that the power of each optical harmonic is Pk = P0/N, we find

Pmw ∼ P2
0 , (40)

in other words, the maximal generated microwave power does not depend on the number of
the comb harmonics. This maximum is achievable for a comb possessing ”amplitude modu-
lation nature” only because the interference of the harmonics occur on the photodiode only
if components E ∗

k Ek+1 have the same phase. For a ”phase modulated comb”, for example,
∑N

k=1 E∗
k Ek+1 = 0 and no microwave signal can be detected.

5. Discussion

One of the basic experimental challenges for the demonstration of a low noise hyperparametric
oscillator is related to the stimulated Raman scattering (SRS) that adds to the noise of the
microwave signal. The SRS starts right after the hyperparametric oscillations when the power of
the first signal and idler sidebands are at the level of several tens of microwatt (several percents
of the overall optical power entering the resonator), and the microwave signal becomes noisy as
the SRS process develops. Raman process is efficient because modes corresponding to Stokes
light generally have higher quality factors. The Stokes light is generated in different mode
families uncoupled from the fiber couplers. The solution to this problem is in the fabrication
of WGM resonators of a proper shape, or usage of special geometrical/spectral dampers to
decrease the SRS efficiency. Suppression of the SRS process will lead to an increase in the
number of the optical sidebands without adding noise to them. We expect that this broadening
of the optical comb will further improve the noise properties of the generated microwave signal.
The number of the optical harmonics is inversely proportional to the square root of the finesse
of the resonator and phase diffusion of the microwave signal is inversely proportional to the
finesse, so we anticipate that the noise properties will still be improved if one increases the
finesse of the resonator.

6. Conclusion

We have studied properties of a hyperparametric microwave oscillator based on a calcium flu-
oride whispering gallery mode resonator, and have shown that the oscillator is promising for
generation of high frequency low noise microwave signals. We have also identified the limita-
tions to the spectral purity obtained in our work, and shown approaches that can improve the
observed performance of the hyperparametric oscillator.
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